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ABSTRACT 

In this paper, we provide demand impact estimates of a critical peak pricing (CPP) 
program tested in the summer of 2011. We develop econometric models that 
examine demand responses of participants in "opt-in," "opt-out," and "tech only" 
CPP programs. Opt-out customers received bill protection while tech only cus­
tomers received in-home displays alerting them of critical peak times, but they 
were not placed on the CPP rate. Our results indicate that opt-in customers re­
duced critical peak period demand the most while opt-out customers' appear to 
attenuate their reduction because of bill protection. Additionally, we refine our 
findings using participant survey responses. In general, we find participants in 
test groups whose environmental or "green" attitude is high bad the strongest 
demand response. 

Keywords: Critical peak pricing, Dynamic rates, Demand response, Average 
load impact, Opt-in, Opt-out, Pilot design, Stratified random sampling 

http:!/dx.doi.org/10.5547/0 1956574.35.3.1 

1. INTRODUCTION 

Sioux Valley Energy (SVE) is an electric distribution cooperative serving approximately 
21,000 electric customers in Minnesota and South Dakota. In 2009, SVE won a Smart Grid In­
vestment Grant to complete the installation of a system-wide advanced metering infrastructure 
(AMI), including necessary backhaul equipment, communication systems, and smart meters. With 
the help of this infrastructure, SVE began to explore the impact of providing customers with time­
of-use electricity rates. Following an initial investigation of various programs, SVE decided to run 
an experiment by offering rates that loosely correlated with the wholesale electricity prices it faced 
on specific days and hours. 

Accordingly, from June 1, 2011 through August 31, 2011, SVE ran a CPP pilot. The goal 
of the pilot was to explore a dynamic pricing program as a means of engaging customers and 
promoting curtailment of electricity use during peak times. In addition, SVE wanted to determine 
whether it would be prudent to offer a CPP rate to all its customers and, if so, bow best to accomplish 
this. 

There are a few practical ways a utility can fully deploy a program of this type. First, it 
can seek volunteers who sign up for its critical peak pricing program. Second, it can make the 
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critical peak pricing program the default, thereby placing all of its customers on the CPP rate. Third, 
it can equip all its customers with in-home displays that alert them of critical peak periods. On this 
third option, the customers' rate stays the same; the benefit comes from curtailment with no mon­
etary reward for the customer. In addition, the second of these choices cannot be practically applied 
without offering the choice to opt out of the program and/or bill protection, since it would risk 
severe customer backlash and termination of the program. Attracting customers to participate in a 

CPP program on an opt-in basis, however, has its own shortcomings. As Matsukawa (2001) notes, 
the demand effect of an opt-in time-varying rate can be distorted as customers whose load profiles 
are less peaky self-select into this rate. 1 

In addition, time-varying prices, such as CPP, are "carrot-and-stick" options that reward 

as well as punish users for peak time use. Since off-peak rates are often significantly low, customers 
that reduce their critical peak period use enjoy the "carrot" end of the program in the form of lower 

total bills. Those that fail to do so can experience increases in their total payment since the signifi­
cantly higher cost of power during critical peak times is not offset by the lower cost during off­
peak periods.2 This is the "stick" end of the program, which may pose political and regulatory 
challenges that a utility needs to consider. 

For instance, many customer stakeholders favor programs that offer customers "carrot" 

only options. Alexander (2010) is one such example. She advocates the use of demand response 
programs, such as peak time rebates (PTR), to reduce peak time usage over dynamic pricing pro­
grams such as CPP. Alexander argues that dynamic pricing exposes residential consumers to volatile 

electricity prices; shifts the risk or responsibility of handling wholesale price volatility from utilities 
that are better equipped for this to consumers who are not; and subjects those on fixed incomes, 
such as seniors and the poor, to food insecurity and health hazards by discouraging air conditioning 
or electric heat use during hot summer or cold winter days. She argues that the "carrot" only option 
leads to peak time demand reduction without exposing consumers to undue hardships.3 

Therefore, exploring not only the demand effect of dynamic prices with opt-in participa­
tion, but also with opt-out participation coupled with bill protection, which converts this program 
from a "carrot-and-stick" mechanism into a "carrot" only one, was important in SVE's experimental 
undertaking. It informs the extent of demand reductions that are possible once a program is fully 
deployed. 

SVE thus set up its dynamic pricing experiment based on test groups composed of opt-in 
and opt-out participants placed on a CPP rate, and a third group that faced the standard rate but 
received in-home displays that alerted its members of critical peak periods. The sample size for 
each group was designed and selected to be representative of each type for the whole system. SVE 

l. He estimates an electricity demand model for Japanese consumers that face Time-of-Day (TOD) rates, where peak 

hours are 7:00 AM to 11:00 PM every day, using a sample of 371 households in the summer of 2003 . He find s that the 

impact of TOD rates on peak time consumption not only depends on the price effect, but also on the self-selection effect 

particularly for households that own non-electric water heaters. 
2. As one referee indicated to us, CPP rates are designed to be revenue neutral for the average customer. Such customers' 

bills are unaffected if they fail to shift their CPP period consumption to non-CPP periods. However, customers with above 

average use during CPP periods can experience increases in their total bills if they fail to shift some of the CPP period 

consumption from CPP to non-CPP periods. 

3. However, PTR has its own shortcomings. For example, potential inaccuracies in baseline (pre-rebate use) estimates 
can lead to distorted rebates. 

Copyright© 2014 by the IAEE. All rights reserved. 
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set the CPP energy rate during critical peak times to be about five times greater than the standard 
energy rate. As an offset, the energy rate for all CPP participants was reduced during all non-critical 
peak times. 

We begin our examination of tbis experimental CPP program by providing a literature 
review of dynamic pricing and its impact on energy use in section 2. In section 3, we discuss the 
design of SVE's pilot program in detail, and provide variable definition and data sources in section 
4. We detail our modeling approach, model estimates and demand impacts in section 5. 

As we indicate in section 5, we evaluate two main aspects of the pilot using separate 
econometric techniques. First, we ascertain the average demand impact of CPP pricing on each test 
group, using a constant elasticity of substitution (CES) demand system and fixed effects models. 
Second, by using survey questions regarding "green" attitudes and other customer attributes, we 
determine some of the main reasons for the different reactions to CPP pricing among individual 
participants. Findings from this step may help SVE to optimize its recruitment efforts when ex­
panding tbis program to other households. 

2. LITERATURE REVIEW 

Dynamic pricing, wbich requires advanced metering infrastructure, is mainly used to better 
align electricity cost with price along the time-scale continuum. For instance, the cost of generating 
and delivering electricity during periods of bigh demand or peak-load, such as during hot summer 
days where air-conditioning (AC) saturation is extensive, is higher than during other periods. Dy­
namic pricing permits the use of time-varying tariffs to reflect such cost variation, and often results 
in load sbifting from high or peak demand periods to off-peak periods. The extent to which dynamic 
pricing (or other demand-response programs) contributes to load shifting/reduction is currently of 
great interest to utilities. This is because they are interested in: Comparisons of the effectiveness 
of traditional demand response programs, such as direct load control (DLC) and time-of-use (TOU) 
pricing, with those of dynamic pricing programs; designing effective load shifting or demand re­
sponse programs as part of larger regulatory, reliability, environmental and efficiency goals; and 
enabling cost efficient provision of power through avoided capacity, energy and transmission and 
distribution (T&D) costs. 

A starting point for studies that explore the load impact of dynamic pricing is an exposition 
of the conditions that necessitate such pricing. In their 1995 survey of the theory of peak-load 
pricing, Crew et al. provide a succinct explanation of these conditions. Primary among these are 
commodities that are not economically storable and for which demand varies over time-e.g. elec­
tricity. If prices do not increase during high demand periods for these goods, it is necessary to 
install capacity to meet the spike in demand, which will remain idle during off-peak periods. Peak­
load pricing mitigates the inefficiency resulting from idle excess capacity by reducing demand at 
peak times. 

Time-of-use (TOU) prices are one form of peak-load prices that are designed to accomplish 
this goal. TOU prices are fixed months in advanced for blocks of time, such as peak, off-peak, or 
"shoulder months," but do not reflect price variations within blocks that result from short-term 
demand and supply conditions (e.g., an unseasonal spike in temperature). Critical peak prices (CPP) 
are a response to the shortcomings of TOU prices. They are made possible with the evolution of 
metering technology that enables more flexible customer response to time-varying prices. While 
CPP prices sometimes retain the block-varying price feature of TOU rates, they also incorporate 
charges at critical system peaks. They are, however, still somewhat inflexible, because their ability 
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to reflect more current market conditions is limited. Real-time pricing (RTP) overcomes these 
limitations by allowing prices to truly reflect current market conditions.4 

Several studies have explored the load impact of peak-load pricing. Aubin et al. (1995) 
discuss the French state-owned electric utility EDF's real-time pricing experiment. They report a 
27% demand reduction in red alert peak hours where the tariff was 17 times greater than the least 
expensive period's tariff. Baladi et al. (1998) investigate residential consumer response to voluntary 
TOU rates using experimental data from Midwest Power Systems of Iowa. They find that TOU 
pricing, where the peak period price was set to be 4.6 times the off-peak period price, resulted in 
20% reduction in peak usage relative to baseline use. Borenstein et al. (2002) present the case of 
Gulf Power's Residential Service Variable Price (RSVP) option, which set a critical period rate that 
was three times greater than the regular peak price. Results from this program indicate average 
energy reductions of 41 % during critical periods. Faruqui and George (2005) present results from 
the Statewide Pricing Pilot (SPP) approved by the California Public Utilities Commission (CPU C). 

In general, for TOU prices that were 70% higher than the standard rate, residential peak use re­
ductions were roughly 5%. For CPP prices that were 5 to 10 times as high, residential peak use 
reductions were roughly 8-15% and 25-30% with smart thermostats.5 

More recent studies provide similar findings. Williamson and Shishido (2012) present the 
Smart Study Together pilot ran by Oklahoma Gas & Electric (OGE). The program involved TOU­
CPP and Variable Peak Pricing (VPP)-CPP rates with the CPP rates set at about 10 times the off­
peak rates. Average peak demand reductions were 20% (0.73 kW) and 21 % (0.75 kW) for those 
on the TOU-CPP and VPP-CPP rates, respectively. Faruqui and Sergici (2011) present results from 
the dynamic pricing experiment of Baltimore Gas & Electric (BGE). They find critical peak reduc­
tions, where peak period prices were 8- 10 times higher than off-peak period prices, were 18% 
without enabling technologies, 23% with Energy Orbs, and 33% with Energy Orbs and smart 
thermostats. Herter (2012) presents results from a Sacramento Municipal Utility District (SMUD) 
Residential Summer Solutions Study. The dynamic pricing option featured a TOU-CPP rate where 
the CPP rate was about 7 times the off-peak rate. The CPP treatment group reduced its average 
critical peak demand by 53 percent during the summer. This is one of the strongest reductions 
registered among the studies that we have examined. 

Faruqui and Sergici (2010) survey 15 time-varying pricing experiments and programs for 
electricity and find that households respond to higher prices by reducing demand. The amount of 
reduction depends on the extent of the price increase, AC ownership and the presence of enabling 
technologies such as programmable thermostats. In general, peak demand reductions range from 
3% to 6% for TOU rates, 12% to 22% for CPP rates with no enabling technology, and 26% to 50% 
for CPP rates with smart thermostats.6 

4. Using a simulation model of a competitive generation market, Borenstein (2005) finds that real-time pricing (RTP) 

reduces peak demand, peak electricity production and the use of low capital/high variable cost peaking units; during the 

highest demand periods, market equilibrium is reached through higher prices rather than the use of additional generation 

capacity. 
5. There are al so studies that have examined demand reductions by large load customers. Braithwait & O'Sheasy (2002) 

provide evidence of substantial demand response by industrial and commercial customers to an hourly pricing (RTP) program 
ran by Georgia Power Company (GPC). They find that load reduction by industrial customers ranged from 30-60% during 

high hourly price periods ($0.50/kWh to $1.50/kWh). Commercial customers reduced demand by 10% to 25% in response 

to similar price increases. Goldman et al. (2004) also report comparable peak time demand reduction by 32 Niagara Mohawk 
Power Corp (NMPC) large load customers of who faced RTP in the years 2000-2002. 

6. The survey also indicates that price elasticities of demand range from -0.02 to - 0.10, and substitution elasticities 

from 0.07 to 0.40. 

Copyright © 2014 by the IAEE. All rights reserved. 
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A survey, summarized in Table 1, from various time-varying pricing programs in Faruqui 
and Wood (2008) also indicates similar findings. 

3. SVE PILOT DESIGN 

SVE elected to run the program from June to August in 2011 7 and set a maximum of 35 
CPP events for the season.8 1t also set CPP events to be between 4 to 8 PM on weekdays; these are 
for hours starting at 16 to 19. In addition, it indicated that participants would receive day-ahead 
notification via four methods of communication: Email, text message, phone calls using IVR (In­
tegrated Voice Response), and in-home display. As part of the project, the in-home displays and/or 
smart thermostats were purchased for the test group participants. 

SVE has two separate residential rate classes (Residential and Farm-Rural). Once the 
program rules were set, SVE opted to use a stratified random selection protocol, described below, 
to select participants from residential and rural residential customers with smart meters. A total of 
three test groups were established for each residential rate class. 

Group one participants, randomly selected from the sample, were provided CPP price 
signals (time and duration of an event) via one or more of the four technologies (chosen by the 
participant) outlined above. Selected members could opt-out of the program if they wished; ap­
proximately 2.5% of participants opted out of the program. In addition, since their bills reflected 
the lesser of the CPP or the standard rate, they faced a no-lose proposition. 

Group two is made up of those recruited to participate from the remaining residential and 
rural residential customers who have AMI meters. The recruitment effort utilized various marketing 
tools, such as flyers and bill inserts, to gain enough participants to have a statistically valid sample 
size. Similar to the randomly selected opt-out group members, these opt-in participants were able 
to choose the mode of communication they preferred. Group two participants were not offered the 
bill protection that Group one enjoyed. 

Group three members were also randomly selected from the remaining residential and rural 
residential members with AMI meters. Members of this group received the same information via 
an in home-display; however, they remained on the standard rate. This tests the impact of providing 
critical peak event information without the pricing structure. It permits the identification of usage 
reductions (or alterations) by households that are possible without price incentives. 

The sample size selection process aimed at creating statistically representative groups that 
reflect SVE's system with a 5 percent sampling error at a 95 percent confidence level. It relied on 
stratified random sampling to accomplish this where representative samples for each test group were 
drawn from different brackets of customers with AMI. Stratified random sampling was chosen 
because it permits more efficient sampling; a smaller representative sample can be drawn at the 
same level of precision as simple random sampling using this method. The number of brackets and 
their boundaries are determined via the "Dalenius-Hodges" method, which is a well-known statis­
tical technique that draws sample boundaries on the basis of the frequency distribution of the 
selected stratification criterion.9 In this case, the criterion was energy use per customer. The total 

7. SVE ran the CPP program over the summer because its power supplier, Basin Electric, already has an extensive 

electric heat direct load control program that affords it substantial control over the winter peak and makes that period 's peak 

below the summer peak. 

8. The number of possible CPP days was unusually high at 35 because the CPP rate was designed to be revenue neutral 

at energy use duration of 140 hours or 35 days. However, only 13 CPP days were called during the summer. 

9. Da1enius and Hodges (1959). 

Copyright © 2014 by the IAEE. All rights reserved. 
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Table 1: Results from Two Surveys on the Effect of Time-Varying Prices 

price ratio 
(CPP-TOU 

peak/off peak) critical peak 
program year(s) participants price design [1] reductions [2] 

PSE&G Residential Pilot 2006/7 1,286 TOU-CPP 7.67 (2006) 14% (no Tech) 
Program 15.7 (2007) 26% (w/SMT) 

OEB Smart Price Pilot 2006/7 373 TOU 3 (TOU) 6% (TOU) 
CPR 8.6 (CPR) 18% (CPR) 
CPP 9.7 (CPP) 25% (CPP) 

Anaheim CPP experiment 2005 123 CPR 3.18-5.19 12% 

Idaho Residential Pilot 2005/6 505 TOU 1.8 (TOU) 0% (TOU) 
423 CPP 3.7 (CPP) 50% (CPP w/SMT) 

Energy Australia Strategic 2005 1,300 DPP 25-33 25% (DPP_H 
Pricing Study (DPP_H) w/IHD) 

13-17 20% (DPP_M 
(DPP_M) w/HD) 

Arneren UE 2004/5 545 TOU-CPP 6.25 13% (no Tech) 
30% (w/SMT) 

California Automated 2004/5 171 (2004) TOU-CPP 9 21 % (avg daily 
Demand Response Pilot 131 (2005) kWh < 24 w/SMT) 

47% (avg daily 
kWh > 24 w/SMT) 

California Statewide Pricing 2003/4 2,500 TOU 2 (TOU) 0-{)% (TOU) 
Pilot CPP-F 3 (CPP-F) 13% (CPP-F) 

CPP-V 9 (CPP-V) 16% (some SMT) 
27% (w/tech 

The Gulf Power Select 2000/1 2,300 CPP 8.3 41% (w/SMT) 
Program 

BGE's Smart Energy Pricing 2008 1,375 DPP DPP = $1.30 18-21% (no tech) 
Pilot PTR PTRH=$1.75 23-27% (w/IHD) 

PTRL=$1.16 28-33% (w/IHD & 
SMT) 

CPL's Plan-it Wise Energy 2009 1,251 TOU TOU = $0.34/ 3% (TOU) 
Pilot CPP $0.27 18% (PTR) 

PTR PTP = $1.80/ 23% (PTP) 
$0.85 
PTR = $1.60/ 
$0.65 

PEPCO's PowerCentsDC 2008 1,300 CPP CPP=$0.75 13% for high income 
Pilot CPR CPR=$0.75 11% for low income 

HP HP = PJM 
wholesale 
price 

PGE's full-scale program 2008/9 25,000 incremental ICPP = $0.60 23% high income 
CPP (ICPP) 9% low income 

[1] The last four are peak period rates ($/per kWh). 
[2] IHD is in-horne display and SMT is smart thermostat. 
[3] DPP (dynamic peak pricing) is another term for CPP and CPR (critical peak rebate) is another term for PTR. 

Copyright © 2014 by the IAEE. All rights reserved. 
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Table 2: Response Rate to Enrollment Survey by Test Group 

Test Surveys Surveys Response 
Sample Group Sent Returned Rates 

Residential Opt-out 98 45 46% 
Opt-in 34 28 82% 
Tech Only 96 26 27% 

Farm and Rural Residential Opt-out 165 77 47% 
Opt-in 42 37 88% 
Tech Only 161 41 25% 

Total 596 272 46% 

sample size for each stratum, or bracket, was then determined by the "Neyman" allocation method, 
which uses the percent standard deviation of each stratum to the total to determine the optimum 
number of sampling units. 10 

This pilot included an enrollment survey as well as a post-pilot survey. The focus of the 
enrollment survey was to identify household and respondent characteristics that may impact house­
hold energy consumption and program reaction, such as the presence of central air conditioning in 
the home or attitudes about environmental issues. The post-pilot survey focused on the respondents' 
level of satisfaction with the program in order to refine future deployments. 

Key components of the enrollment survey included questions on: 

• Presence of various household appliances that influence energy use, including central 
air conditioning. 

• Willingness to accept and incorporate technological advancement into daily life. 
• Topics that identify the household members' attitudes on the environment and actions 

taken based on this attitude. 

Each test group participant was surveyed, and response rates are listed in Table 2. 
We should note that the minimum sample sizes required to achieve a statistically valid 

representation of the population are a fraction of the numbers used in the CPP pilot. This is because 
an enrollment survey is a critical part of the pilot program and in an effort to ensure reliable, 
significant, and robust results, this minimum is raised to levels beyond those required to achieve a 
representative sample. In particular, the minimum thresholds for the samples are escalated based 
on an assumption of a 25 percent response rate to the survey for each test group. In addition to the 
assumed low enrollment survey response rate, this escalation helped to account for bad data and 
other unforeseen factors. Therefore, survey response rates beyond 25% permit us to make valid 
inferences about the population which the pilot samples are designed to represent. 

4. VARIABLE DEFINITIONS AND DATA SOURCES 

As indicated earlier, the CPP experiment involves households from residential and farm­
rural rate classes, and three test groups for each rate class. Their energy usage is recorded bi-hourly 
over the months of June, July and August in 2011; we aggregate these to the hour level and use 
hourly data in our analysis. During these months there were 13 CPP event days called. 

10. See Neyman (1938). 

Copyright © 2014 by the IAEE. All rights reserved. 
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Table 3: Summary Statistics of Fixed Effects Regression Variables 

variables units Avg Max Min Stdev N 

Demand (Residential) kW 1.94 39.12 0.00 1.83 713,314 
Cooling-degree Hour (Residential) OF 8.68 34.00 0.00 7.82 713,314 
Dew Point (Residential) OF 62.39 81.00 38.00 7.81 713,314 
Demand (Rural) kW 3.99 130.91 0 5.25 1,185,582 
Cooling-degree Hour (Rural) OF 8.67 34 0 7.82 1,185,582 
Dew Point (Rural) OF 62.38 81 38 7.81 1,185,582 

In addition, hourly cooling and heating degree data for the cooperative's service territory 
is gathered from the Midwestern Regional Climate Center (MACS). MACS provides such data for 
various weather stations, which are mapped to the service territory of the cooperative. Summary 
statistics of the data used in the study are provided in Table 3. 

The information gathered from the pre-pilot survey is used to understand participants' 
characteristics, and identify, with econometric modeling, which demographics and features drive 
program responses. The main characteristics that we use in our demand response assessment from 
the survey include ownership of central air conditioning units 1 1 and "green attitudes." We construct 
the green attitude variable using the enrollment survey responses to four general categories of 
questions about the environment from test group participants. These categories deal with: 

• A participant's stated level of concern about climate change; 
• Demonstrated behavior personally taken to act on the stated concern; 
• Stated attitude about others' actions to address climate change; and 
• Stated level of favorability about organizations seeking to reduce man-made greenhouse 

gas emissions. 

We examine each respondent's answers to questions in these four areas to create a green attitude 
variable. The "green" attitude variable is a composite index, which ranges from 0 to 1, of responses 
to ten different attitudinal questions. Responses to these questions are coded such that the greater 
the level of "green" attitude the higher the score. In particular, responses to the questions are coded 
as follows: 

Missing Response: 0 = 0.0 
Strongly disagree: 1 = 0.2 
Somewhat disagree: 2 = 0.4 
Unsure: 
Somewhat agree: 
Strongly agree: 

3 =0.6 
4=0.8 
5 = 1.0 

We assume some questions are better representations of a "green" attitude than others. Thus, re­
sponses are weighted to reflect their relative importance when constructing the index. In particular, 

11. The amount of electricity use depends on many different appliances in customer households. Three primary appli­
ances that typically drive electricity use during peak times are central air conditioning (CAC), electric water heaters and 

electric ranges/ovens. We tested the influence of these appliances, but only CAC is found to have a statistically meaningful 

effect on hourly demand. 

Copyright © 2014 by the IAEE. All rights reserved. 
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Table 4: Green Attitude Variable Values Across Groups 

Residential Class Farm-Rural Class 

Average 0.63 0.65 
Opt-out Min 0.00 0.00 

Max 0.98 0.95 
Average 0.71 0.64 

Opt-in Min 0.00 0.00 
Max 0.96 0.89 

Average 0.75 0.60 
Tech Only Min 0.00 0.86 

Max 0.99 0.00 

high indicators of a "green" attitude are weighted highly in the index (weight= 0.15), medium 
indicators are weighed in the middle (weight= 0.1 0), while low attitude indicators are given a low 
weight (weight= 0.05). We present the questions and the weights used to construct the index in 
Table Al in the Appendix. 

Table 4 presents summary statistics of the values of this variable by rate class and test 
group. 

5. MODELING PROCEDURE 

5.1 Estimation Approach 

While our focus in this paper is the extent of demand reduction from the CPP experiment, 
which we estimate by using fixed effects models detailed below, we also estimate demand functions 
for power use to examine price and substitution elasticities. We use the CES demand system, 
expressed in logs, to estimate price and substitution elasticities as detailed in Faruqui & Sergici 
(2010). The CES function used to estimate substitution elasticity is theoretically and practically 
appealing and permits us to model peak to off-peak demand as a function of peak to off-peak prices 
and weather, and individual effects. Since we have hourly data for each month by customer, we are 
able to determine the marginal price paid by each customer in each month for each 500 kWh block 
and pricing period as defined in the CPP pilot based on the rates provided in Table 5. 

The general form of the CES model used to estimate substitution elasticity is given by: 

(1) 

The left hand side term is the natural log of CPP period to non-CPP period demand for the ith 
individual during day t; the first term on the right hand side is the sum of individual specific intercept 
terms (a;, i = 1 ... N) ; the second term is substitution elasticity (a) times the natural log of CPP 
period to non-CPP period price; the third term is a measure of weather effect (0) times the difference 
in CPP period to non-CPP period cooling degree hours; and the last term is random noise. Cooling 
degree hours are not logged since there are observations with values of zero. 

The CPP period variables are averages of energy use, price and CDH during CPP hours 
per day while their non-CPP counterparts are averages for the non-CPP hours per day. For example, 
D p,it is individual i's average hourly demand during CPP hours in day t while D op,it is the same 
individual's average hourly demand during non-CPP hours in day t. The data set up in this manner 

Copyright © 2014 by the IAEE. All rights reserved. 
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Table 5: Rate Structure by Classes 

Residential 

Usage Ranges Default rate CPP rate 

O< kWh < =500 $0.0915 $0.0689 
500 < kWh < IOOO $0.0746 $0.0562 
> 1000 kWh $0.0746 $0.0562 
Critical Peak kWh $0.5000 

Farm-Rural 

Default rate 

$0.1038 
$0.0915 
$0.0746 

CPP rate 

$0.0781 
$0.0689 
$0.0562 
$0.5000 

consist of 328 cross-sections or individuals with 91 daily observations for the residential class and 
546 cross-sections with 91 daily observations for the farm-rural class. 

In addition, we also obtain daily price elasticity of demand by using the following model: 

N 

ln (D;,) = La;+ /3 * ln (P;,) + e * CDH;, + e;, (2) 
i = I 

This model is estimated using average daily per hour values, where D;, is individual i's average 
daily demand per hour, and P;, and CDH;, are price and cooling-degree values for the same time 
period. This model is also based on 328 cross-sections with 91 average daily observations for the 
residential and 546 cross-sections with 91 daily observations for the farm-rural class. We estimate 
both models (Model 1 and Model 2, respectively) using fixed effects. 

We also use a variation of the difference-in-differences method to estimate the effect of 
the CPP experiment on critical peak period demand. Since the introduction of this method by 
Ashenfelter and Card (1985), it has become a popular approach to estimate the effect of various 
program interventions for which treatment and control groups exist. In the most common set up, 
two groups are observed at different points in time, where group one receives treatment in the 
second period and group two does not. The behavior of the second group is used as baseline against 
which the effect of the treatment on the first group is measured. 

However, due to the special set up of our experiment where the opt-out group receives 
bill protection and members of the opt-in group self-select into the program, we do not compare 
test groups' energy use relative to the control group. Instead we use the non-CPP period use of 
each test group as its baseline. We compare treatment or critical peak period price signal effects 
relative to this baseline. An example of this approach is in Herter and Wayland (2010). 

To illustrate how this modified method works, we consider a simple set up, where members 
of a test group T receive treatment (TE) during certain periods. We can specify this model as follows: 

Y;,,T = a;+ /3,,T * d,.T + r ,,T * TE + e;,,T (3) 

where Yu.T is the outcome that we observe from the experiment; a; is an individual specific intercept 
term; dt.T is a dummy variable for period t and test group T; /3,,T is the parameter that captures group 
Ts outcome during period t; TE is a dummy variable that takes the value of one when the treatment 
is in effect and 0 otherwise; r,,T is the parameter that captures the outcome of the treatment; and eu 
is a random noise term. The outcomes in the non-treatment and treatment periods, respectively, are 
estimated by: 

Y;, T = a;+ b, T * d, T . . . (4) 
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Table 6: Test Group Types by Rate Class 

Rate Class or Household Type 

Test Group Type residential farm-rural 

Opt-out (involuntary) IRS IFR 
Opt-in (voluntary) VRS VFR 
Tech Only (lliD) TRS TFR 

Yit,T= a;+ Pc,T * d,,r+ Yc,T (5) 

The estimate that measures the effect of the treatment on group Tis given by: 

(6) 

Therefore; the parameter estimate on the term with tbe treatment dummy captures the treatment 
effect. Based on this general framework, we specify energy demand as a function of: 

• Individual specific effects, 
• Hour of the day for the opt-in, opt-out and technology groups, 
• Event day hours for all three test groups, 
• Cooling-degree hour (CDH) times hour of the day for the three test groups, 
• CDH times event day hours for all three test groups, 
• Dew point (DP) times hour of the day for all three test groups, 
• DP times event day hours for all three test groups 

This demand model is estimated using fixed effects. 
We also estimate a set of models that specify demand as a function of household charac­

teristics gathered from the enrollment survey discussed earlier. Although some of these variables 
are time invariant, they are interacted with hourly variables in the models permitting the use of FE 
estimation. The household characteristics fixed effects models are based on a subset of the above 
households that received and responded to the pre-pilot survey. These set of models feature not 
only separate functions by rate class, but also by test group. Each model is specified as a function 
of: 

• Individual specific effects, 
• Cooling degree-hour (CDH), 
• Dew Point (DP), 
• Hour of the day dummy variables, 
• Dummy variables for event day hours, 
• Hour of the day for households with central air conditioning (CAC), 
• Event day hours for households with CAC, 
• Hour of the day for different levels of "green" attitude (pctgn), 
• Event day hours for different levels of pctgn, 

Table 6 provides a matrix of the test groups and rate class/household types used in modeling. 
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Table 7: CES System Estimates 

Model Rural Model 1 Residential Model 1 Rural Model 2 Residential Model 2 

Estimator FE FE FE FE 

Cross Sections 546 328 546 328 

Time Series Length 91 91 91 91 

R-square 0.846 0.770 0.259 0.219 

Parameter Parameter Parameter Parameter 
Variables Estimates Pr > ltl Estimates Pr > ltl Estimates Pr> ltl Estimates Pr > ltl 

lnP -0.138 0.000 -0.139 0.000 

CDH 0.026 0.000 0.038 0.000 

ln(Pp/Pop) -0.061 0.000 -0.088 0.000 

CDHp-CDHop 0.015 0.000 0.026 0.000 

Table 8: Summary of Elasticity Estimates from Different Programs 

Jurisdiction Pilot Year program sub elasticity price elasticity 

CA Statewide Pricing Pilot 2003-2004 CPP-F/CPP-V 0.09 to 0.15 -0.03 to -0.05 

France Electricite de France Tempo 1996 day-of-year -0.79 
Program 

IL Energy-Smart Pricing Plan 2005 RTP - 0.05 to -0.07 

NJ GPU Pilot 1997 CPP 0.30 

NJ PSE&G Residential Pilot Program 2006-2007 CPP 0.06 to 0.13 

NSW Energy Australia's Network Tariff 2006 TOU -0.30 to -0.38 
Reform 

Summary 0.06 to 0.30 -0.03 to -0.79 

5.2 Model Results 

Table 7 provides the results from the CES demand models, where individual specific 
parameter estimates have been suppressed to conserve space. We find substitution elasticities of 
0.06 and 0.09 for the rural and residential households, and price elasticities of -0.14 for both rate 
classes. 

These values are within ranges reported in other studies. King and Chatterjee (2003) sum­
marize estimates of own-price and substitution elasticities for time-of-use and critical peak pricing 
experiments presented in 56 papers published since 1980. They find short run own-price elasticities 
range from a low of -0.13 to a high of -0.34 in forty-nine U.S. experiments, and from -0.28 to 
-0.66 in seven other industrialized countries' experiments. They also find substitution elasticities 
range from 0.10 to 0.19 for fourteen U.S. experiments. On the other hand, in their survey of 15 
dynamic pricing experiments and programs for electricity, Faruqui and Sergici (20 1 0) find that price 
elasticities of demand range from -0.02 to -0.10. They also find substitution elasticities range 
from 0.07 to 0.40. Other studies, as summarized in Table 8, find price and substitution elasticity 
estimates that are within the high and low ranges presented in these two studies. 
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In addition, using average values of CPP period to non-CPP period prices we can determine 
the extent of average CPP to non-CPP period demand reductions based on our CES parameter 
estimates. For those receiving the CPP treatment in the farm-rural rate class the average demand 
shift from CPP to non-CPP period is 12%. On average, this value is 18% for treatment recipients 
in the residential rate class. Next, we examine if we can find similar demand savings based on our 
fixed demand models. 

The farm-rural demand model is based on 371 cross-sections or program participants with 
an average hourly reading of 2,178. Of the 371 cross-sections 168 are opt-out customers, 43 are 
opt-in, and 160 are those with in-home displays only. Since the hourly readings vary across partic­
ipants, we have an unbalanced panel data with 802,636 observations. The residential demand model 
we estimate has 230 cross-sections with an average time-series length of 2,178 hourly data. Of the 
230 cross-sections 99 are opt-out customers, 34 are opt-in, and 97 are those with in-home displays 
only. The total number of observations in this rate class we use in the model is 499,908. 

Estimates from the fixed effects farm-rural and residential household demand models are 
presented in Table A2 in the Appendix. Note that we have suppressed the household effect estimates 
and present estimates for hours 13 to 22 to save space; as stated earlier the CPP period was for 
hours starting at 16 to 19. Our models capture the kW impact of the CPP price signal by comparing 
each test group's non-CPP load to its CPP load profile. The models also control for weather dif­
ferences during CPP and non-CPP days. We note from the model estimates that the kW impact of 
weather during event hours is not significantly different from non-event hours; most of the parameter 
estimates of the hourly cooling-degree and dew point variables are not statistically significantly 
different from zero during event hours whereas the effect of hourly cooling-degrees and dew point 
are positive and significant during most non-event hours. Nonetheless, the kW impact of CPP takes 
into account the weather impact during CPP hours along with event hour dummy parameter esti­
mates. 

Figures 1 and 2 present the hourly load profiles during event and non-event days. 
We note that the farm-rural test groups' power consumption is generally higher during 

pre-treatment hours on event days relative to non-event days. Consumption during pre-treatment 
hours on event days, however, is not much different from such consumption on non-event days for 
the residential test groups. Therefore, there appears to be some "pre-cooling" and higher power use 
before event hours among farm-rural households, but not among residential households. In addition, 
all test groups ramp up consumption after the event hours. 

We also estimate separate fixed effects models for each rate class and test group based on 
household attributes that we construct from the pre-enrollment survey. For the farm-rural rate group 
we estimate separate models for the opt-out (95 cross-sections), opt-in (42 cross-sections), and in­
home display (55 cross-sections) groups. Similarly, for the residential class we estimate demand 
models for: the opt-out test group, with 32 cross-sections; the opt-in test group, with 21 cross­
sections; and the in-home display group, with 25 cross-sections. Each of these six groups has 2178 
hourly observations. 

We present these results in Table A3 in the Appendix. In general, those with CAC use 
more energy relative to those without CAC during non-event hours. In addition, energy use is lower 
during event days relative to non-event days, and those with greater "green" attitudes use less 
energy on all days (non-event and event days) relative to those with less "green" attitudes. The 
effect of "green" attitudes on demand reduction is greatest for the in-home display test groups. In 
addition, the higher the level of cooling-degree hours and dew point, the higher is demand for 
energy. As in the first set of models, weather effects on demand are not statistically different during 
event and non-event days. Therefore, we do not specify models that feature such differences. 
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Figure 1: Farm-Rural Load Shapes by Test Group for during Event and Non-Event Hours 
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Figure 2: Residential Load Shapes by Test Group during Event and Non-Event Hours 
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Table 9: Average Impact Estimates from Fixed-Effects Demand Models 

Test Group Baseline kW kW Impact % impact 95% confidence interval 

Farm Rural 
Opt-out 5.22 - 0.17 3% 0.07 -0.42 
Opt-in 3.78 - 1.06 28% -0.50 - 1.62 
lliD 5.23 - 0.07 1% 0.08 - 0.23 

Residential 
Opt-out 3. 16 - 0.36 11% -0.17 -0.55 
Opt-in 3.90 - 1.02 26% - 0.70 -1.35 
lliD 3.36 - 0.24 7% - 0.05 -0.43 

Figure 3: Average Demand Impact by Hour for the Farm-Rural and Residential 
Households 
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We prov1de summaries of the change in demand during critical peak period in Table 9. 
The numbers given provide the average hourly reduction both in kW and percentage terms. The 
results indicate that members who are in the opt-in test group had the highest level of reduction 
during the peak period. Of the two opt-in test groups, those in the farm-rural rate class reduced 
their usage the most; on average, their use declined by 1.06 kW or 28% during the critical peak 
hours. On average, the farm-rural and residential treatment groups reduce demand by 11 % and 
15%, respectively. These values are in line with those estimated from the CES models, which are 
12% and 18%, respectively, as noted in section 5.2. 

We use the delta method to develop 95% confidence bounds for the average kW impacts 
for each test group. Except for the farm-rural opt-out and in-home display (technology only) groups, 
the CPP program has resulted in tangible peak load savings. In addition, it appears that allowing 
customers to opt-m to these sorts of programs hold the greatest promise in terms of peak demand 
reductions. 

Figure 3 presents the average demand impacts by hour for each rate class and test group. 
Note that the four critical peak hours begin with hour 16 and end after hour 19. 

5.4 Household Characteristics Demand Model Results 

We consider both structural (appliance stock, building vintage, number of people in a 
households, age of participants) and attitudinal (preference for new products, and willingness to act 
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Table 10: Average Impact Estimates by Household Characteristics 

Total CAC Green General 

Farm Rural 
Opt-out -0.06 0.21 -0.56 0.30 
Opt-in -0.96 -0.05 -0.21 -0.70 
IHD -0.06 0.09 -0.55 0.40 

Residential 
Opt-out -0.31 0.15 -0.13 -0.33 
Opt-in -1.10 -0.61 0.38 -0.87 
IHD -0.02 -0.60 -1.49 2.07 

Table 11: Average Impact Estimates from Fixed Effects Models 

Farm Rural (kW Impact) Residential (kW Impact) 

Model Type Opt-out Opt-in IHD Opt-out Opt-in IHD 

Minimum Green w/CAC 0.51 -0.74 0.49 -0.18 - 1.48 1.47 
Average Green w/CAC -0.06 -0.96 -0.06 -0.31 -1.10 -0.02 
Maximum Green w/CAC - 0.32 -1.04 - 0.30 -0.39 -0.97 -0.50 
Difference in Max to Min Green -0.82 -0.30 -0.79 -0.21 0.52 -1.97 

on concern about the environment) characteristics to identify the elements that contribute to critical 
period demand reduction. While the results from the survey potentially permit the testing of nu­
merous structural and attitudinal models, our findings indicate the presence of central air condi­
tioning (CAC) and green attitude contribute most to changes in behavior during event hours. Hence, 
we focus our research on these drivers of event period usage. 

In general, we find that the higher a customer's green attitude, the greater its energy 
reduction, regardless of other household characteristics. Green attitude, and not electric appliance 
presence, is the greatest driver of reduction in household energy use during peak events. We present 
a summary of average impacts by household characteristics in Table 10 to demonstrate this. On 
average, only for two test groups (residential opt-in and in-home display) does the presence ofCAC 
lead to demand reduction during CPP periods. 

The residential opt-in and both opt-out groups reduce demand during CPP hours for rea­
sons other than CAC ownership and green attitudes. Both in-home display groups and the rural 
opt-out group increase power use net of CAC ownership and green attitude-related reductions. Such 
increases mute their overall response during CPP hours. These are the groups that register either 
low or statistically insignificant demand reductions. 

We note, however, that while we find a significant correlation between demand reduction 
and green attitudes, such an attitude does not appear to lead to extra demand reduction among those 
in the residential opt-in group. The positive coefficients of the green variables for this test group 
indicate the flattening or moderation of the decline in demand during CPP hours. This may be due 
to the self-selection of customers whose behavior already matches the desired response. 

In addition, households with CAC units that reduce usage during peak events do so at a 
greater level if they have an above average green attitude. The summary of the effect of the com­
bination of CAC ownership with green attitudes is presented in Table 11 . The table shows how 
demand impact changes over different levels of green attitudes when the household has an AC unit 
available. Across all programs, the maximum green household is expected to reduce demand by 
0.59 kW more than a household with the minimum green attitude; this value is the average of the 

Copyright © 2014 by the IAEE. All rights reserved. 



Demand Impact of a Critical Peak Pricing Program I 17 

difference between maximum green with AC demand impact and minimum green with AC demand 
impact. We also note that the residential opt-in group is the only test group where increasing "green" 
attitudes do not afford more kW savings. 

In general, CPP price signals lead to peak demand reductions. Central air conditioning 
ownership contributes to this decline, though less than the level of green attitude, which contributes 
to such reduction significantly. In addition, other factors unrelated to greenness and the presence 
of CAC also contribute to peak period demand reductions: especially among the treatment groups, 
but not for the in-home display groups, which have the weakest overall response. 

6. CONCLUDING REMARKS 

Our survey of various time-varying programs and experiments shows that they have, on 
average, led to 16%, 25% and 34% reduction in peak time use without enabling technologies, with 
some form of in-home display and with smart thermostats, respectively; in-home displays make an 
incremental peak demand reduction of about 9% possible while smart thermostats make additional 
reduction of about 18% possible. Therefore, peak time energy use reduction of about 25%, or higher 
with enabling technologies, appears to be the norm. 

For the SVE CPP pilot, we find that the average of the rural and residential opt-in test 
groups' peak time reduction is 27% and those of the opt-out test groups' is 7%. Since most of the 
survey results are based on opt-out time-varying prices, our results are about half to a third of those 
reported in similar programs. We deduce that offering CPP rates on an opt-out basis with bill 
protection leads to significantly lower per-participant peak demand reduction. The per-participant 
kW reductions are 1.04 and 0.27 for the opt-in and opt-out programs, respectively. Since there are 
more participants in the opt-out (267 from both rate classes) than in the opt-in (77 from both rate 
classes) program the difference in peak demand reductions at the program-level are not as large. 
For the opt-in group, program-level peak demand reduction is 80 kW while it is 72 kW for the opt­
out group. Bill protection is generally offered to ensure customer buy-in. Our results indicate that 
efforts should be made to emphasize that customers have the choice to switch from the CPP rate 
to the standard rate when deploying such programs rather than offering bill protection. This ap­
proach is likely to garner greater demand reduction. 

Offering the program on an opt-in basis does result in significant kW reduction during 
critical peak events. However, based on our study of household characteristics that drive peak 
demand reductions, those that self-select into the program do not offer any more demand reduction 
than would be achieved if the CPP rate were offered as the default. Most customers that self-select 
into such programs already have strong incentives to reduce peak demand, as captured by the 
positive coefficient of the characteristic that drives such reductions the most ("green" attitude). 
Therefore, we recommend exploring the effect of offering CPP rates on an opt-out basis and without 
bill protection to fully understand the demand changes that are possible under this pricing scheme. 
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APPENDIX 

Table Al: Questions and Weights of "Green" Attitude Index 

Weight in 
Question Index Survey questions used to gauge "green" attitudes 

1 0.15 The long term threat from global warming/global climate change is serious. 

2 0.15 I trust environmental organizations, such as the Sierra Club or Greenpeace, to give me 
dependable information on how to optimize my energy use. 

3 0.05 I trust academic or scientific organizations, such as researchers at a major University, to 
give me dependable information on how to optimize my energy use. 

4 0.05 I trust government/public sources, such as the Department of Energy or my local 
municipality, to give me information on how to optimize my energy use. 

5 0.10 Everyone should make a real effort to conserve energy. 

6 0.10 I regularly pay attention to energy related issues because they affect me directly, not just 
our country. 

7 0.15 I have sought ways to reduce my energy use in order to do what I can to protect the 
environment. 

8 0.05 I monitor my home's energy use by reviewing my energy bill on a monthly basis. 

9 0.05 Customers who use too much energy should pay higher rates as an incentive to conserve 
more. 

10 0.15 I would be willing to pay a little more on my monthly electricity bill for "green" energy 
that comes from renewable sources. 
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Table A2: Farm-Rural and Residential Household Fixed Effects Demand Models 
n N 
0 Model Farm-Rural Residential Model Farm-Rural Residential 0 
'0 
'< Estimator FE FE Estimator FE FE 

-... 
::l. 

~ 0<1 
N 371 230 N 371 230 ::r !'I> 

© T 2178 2178 T 2178 2178 ~ IV R-square 0.864 0.480 R-square 0.864 0.480 0 !'I> :;;: ~ 
c::r Parameter Parameter Parameter Parameter '< 
'< 

~ & Variable Estimates Pr > ltl Estimates Pr > ltl Variable Estimates Pr > It I Estimates Pr > ltl 
" :;;:: 

~ Opt-Out_hr13 -0.425 0.014 -1.022 0.000 Opt-Out_hr 13_Event -0.712 0.242 -1.757 0.000 ~ 
$::) 

rn Opt-Out_hr14 -0.603 0.000 -1.214 0.000 Opt-Out_hr14_Event -0.754 0.169 -0.928 0.025 -
~ Opt-Out_hr15 -0.353 0.037 -1.038 0.000 Opt-Out_hr 15_Event -0.367 0.469 -0.852 0.026 

;J. Opt-Out_hrl6 -0.327 0.055 - 1.002 0.000 Opt-Out_hr 16_Event 0.232 0.639 -0.470 0.208 
0<1 Opt-Out_hr17 -0.155 0.367 -0.927 0.000 Opt-Out_hr 17 _Event -0.549 0.281 -0.851 0.026 ::r 
1;1 

Opt-Out_hr18 0.276 0.158 -0.561 0.000 Opt-Out_hr 18_Event -0.640 0.208 -0.604 0.114 ..., 
" Opt-Out_hr19 1.138 0.000 0.187 0.328 Opt -Out_hr 19 _Event -1.077 0.035 - 0.456 0.235 "' " ~ Opt-Out_hr20 0.059 0.840 -0.130 0.556 Opt-Out_hr20_Event 0.279 0.577 0.304 0.419 <1> 
?- Opt-Out_hr21 - 0.338 0.269 -0.343 0.136 Opt-Out_hr21_Event 1.883 0.001 1.060 0.013 

Opt-Out_hr22 0.312 0.288 -0.276 0.211 Opt-Out_hr22_Event 1.624 0.004 0.603 0.149 
Opt-ln_hr13 -0.675 0.051 -1.144 0.000 Opt-In_hr13_Event -2.836 0.020 -2.331 0.003 
Opt-In_hr14 -1.176 0.001 -1.179 0.000 Opt-ln_hr14_Event -1.461 0.183 -!.260 0.076 
Opt-ln_hr15 -1.306 0.000 -1.180 0.000 Opt -ln_hr 15 _Event -0.580 0.569 -0.281 0.668 
Opt-In_hr16 -0.877 0.010 -0.700 0.001 Opt-ln_hr l6_Event -1.642 0.098 0.302 0.638 
Opt-In_hr 17 -0.814 0.018 -0.361 0.103 Opt -ln_hr 17 _Event -0.861 0.398 - 0.372 0.571 
Opt-ln_hr18 -0.263 0.501 -0.066 0.794 Opt-In_hr 18_Event -0.863 0.397 -0.712 0.278 
Opt-In_hr 19 0.485 0.341 0.697 0.033 Opt-ln_hr 19 _Event - 1.697 0.097 - 1.158 0.078 
Opt-In_hr20 -0.3 11 0.597 -0.282 0.455 Opt-In_hr20_Event -0.681 0.496 0.947 0.142 
Opt-ln_hr21 -0.648 0.289 -0.168 0.669 Opt-In_hr21_Event 3.146 0.006 1.500 0.041 
Opt-In_hr22 -0.258 0.661 -0.935 0.013 Opt-In_hr22_Event 1.964 0.078 1.326 0.065 
IHD_hr l3 -0.962 0.000 -0.951 0.000 IHD_hr13_Event -0.774 0.215 -1.821 0.000 
IHD_hr14 -1.109 0.000 -1.277 0.000 IHD_hri4_Event -0.386 0.493 - 0.731 0.079 
IHD_hr15 -0.967 0.000 -!.207 0.000 IHD_hr15_Event -0.091 0.861 -0.060 0.875 
IHD_hr16 -0.793 0.000 -0.888 0.000 IHD_hr16_Event -0.459 0.367 - 0.339 0.367 
IHD_hr17 -0.777 0.000 -0.792 0.000 IHD_hri7_Event -0.512 0.328 -0.701 0.069 
IHD_hrl8 -0.185 0.357 - 0.453 0.002 IHD_bri8_Event -0.206 0.694 - 0.646 0.094 
IHD_brl9 0.578 0.027 0.243 0.209 IHD_hr19_Event -1.196 0.023 -0.978 0.012 
IHD_hr20 0.205 0.498 - 0.266 0.233 IHD_hr20_Event 0.069 0.893 0.253 0.504 
IHD_hr21 -0.331 0.292 -0.299 0.197 IHD _hr21_Event 0.877 0.134 1.209 0.005 
IHD_hr22 0.332 0.271 -0.216 0.333 IHD _br22_Event 0.520 0.363 1.096 0.009 

(continued) 



Table A2: Farm-Rural and Residential Household Fixed Effects Demand Models (continued) 

Model Farm-Rural Residential Model Farm-Rural Residential 
Estimator FE FE Estimator FE FE 
N 371 230 N 371 230 
T 2178 2178 T 2178 2178 
R-square 0.864 0.480 R-square 0.864 0.480 

Parameter Parameter Parameter Parameter 
Variable Estimates Pr > ltl Estimates Pr > It I Variable Estimates Pr > ltl Estimates Pr > I tl 
Opt-Out_hri3_CDH 0.063 0.000 0.047 0.000 Opt-Out_hri3_CDH_Event 0.011 0.251 0.013 0.085 
Opt-Out_hrl4_CDH 0.065 0.000 0.047 0.000 Opt-Out_hri4_CDH_Event 0.021 0.032 0.018 0.017 
Opt-Out_hr!S_CDH 0.071 0.000 0.057 0.000 Opt -Out_hr IS_ CDH_Event 0.021 0.046 0.017 O.D38 
Opt-Out_hrl6_CDH 0.071 0.000 0.056 0.000 Opt-Out_hr16_CDH_Event 0.019 0.111 0.022 0.013 
Opt-Out_hri7_CDH 0.070 0.000 0.056 0.000 Opt-Out_hr17 _CDH_Event 0.018 0.184 0.022 0.026 
Opt-Out_hr18_CDH 0.076 0.000 0.059 0.000 Opt-Out_hr18_CDH_Event -0.002 0.877 -0.012 0.279 
Opt-Out_hr19_CDH 0.086 0.000 0.066 0.000 Opt -Out_hr 19 _ CDH_Event 0.002 0.900 -0.009 0.480 

0 Opt-Out_hr20_CDH 0.059 0.000 0.056 0.000 Opt-Out_hr20_CDH_Event -0.012 0.444 -0.021 0.087 ('> 

Opt-Out_hr21_CDH 0.049 0.000 0.051 0.000 Opt-Out_hr2l_CDH_Event 0.005 0.764 -0.008 0.480 ~ 
I:> 

Opt-Out_hr22_CDH 0.061 0.000 0.053 0.000 Opt-Out_hr22_CDH_Event -0.008 0.568 -0.032 0.003 ;:: 
I:>_ 

Opt-In_hr13_CDH 0.037 0.000 0.052 0.000 Opt-In_hri3_CDH_Event 0.017 0.390 0.024 0.053 
~ Opt-In_hrl4_CDH 0.034 0.000 0.060 0.000 Opt-In_hr14_CDH_Event 0.034 0.087 0.0 12 0.330 'tl 

Opt-In_hriS_CDH 0.040 0.000 0.065 0.000 Opt-In_hriS_CDH_Event 0.030 0.160 -0.003 0.856 I:> ,.., 
() .... 
0 Opt-ln_hrl6_CDH 0.045 0.000 0.076 0.000 Opt-ln_hr16_CDH_Event 0.017 0.469 -0.016 0.291 

~ '0 
'< Opt-In_hrl7_CDH 0.041 0.000 0.080 0.000 Opt-In_hr17 _CDH_Event 0.000 0.988 -0.005 0.788 ::J. I:> 
(IQ 

Opt-In_hr18_CDH 0.052 0.000 0.079 0.000 Opt-In_hrl8_CDH_Event -0.034 0.242 -0.014 0.442 ;r () 
@ Opt-In_hr19_CDH 0.065 0.000 0.099 0.000 Opt-In_hr19_CDH_Event -0.044 0.2 18 -0.045 0.047 ;::: _ .... 
N Opt-In_hr20_CDH 0.053 0.000 0.067 0.000 Opt-In_hr20_CDH_Event -0.027 0.396 -0.053 0.010 c:;· 
0 I:> :; Opt-ln_hr21_CDH 0.041 0.004 O.D75 0.000 Opt-In_hr2l_CDH_Event 0.070 0.022 -0.038 0.051 -r::r Opt-ln_hr22_CDH 0.041 0.004 0.063 0.000 Opt-In_hr22_CDH_Event 0.017 0.552 -0.055 0.003 ~ '< 

I:> 
& IHD_hrl3_CDH 0.050 0.000 0.051 0.000 IHD_hr13_CDH_Event -0.001 0.925 0.013 0.076 """' " 
~ IHD_hrl4_CDH 0.051 0.000 0.053 0.000 IHD_hr14_CDH_Event 0.018 0.079 0.007 0.338 '"" .... 

IHD_hrlS_CDH 0.057 0.000 0.060 0.000 IHD_hrlS_CDH_Event 0.010 0.344 0.008 0.351 c:; · 
til s· 
~ 

IHD_hri6_CDH 0.061 0.000 0.063 0.000 IHD_hr16_CDH_Event 0.014 0.242 0.011 0.212 OQ 

IHD_hri7_CDH 0.063 0.000 0.064 0.000 IHD_hr17 _CDH_Event 0.012 0.378 0.021 0.039 

'"" ::J. Cl ~ IHD_hrl8_CDH 0.067 0.000 0.066 0.000 IHD _hr 18_CDH_Event -0.012 0.429 0.003 0.756 
OQ r;; IHD_hrl9_CDH 0.080 0.000 0.077 0.000 IHD_hrl9_CDH_Event -0.007 0.709 -0.014 0.301 ~ 

~ IHD_hr20_CDH 0.066 0.000 0.058 0.000 IHD_hr20_CDH_Event -0.025 0.137 -0.011 0.380 ~ 
" ~ IHD_hr21_CDH 0.045 0.000 0.053 0.000 IHD_hr2l_CDH_Event -0.003 0.871 -0.007 0.573 

.._ 

" N 
?- IHD_hr22_CDH ' 0.062 0.000 0.054 0.000 IHD_hr22_CDH_Event -0.025 0.084 -0.012 0.260 ,_. 

(continued) 



(") Table A2: Farm-Rural and Residential Household Fixed Effects Demand Models (continued) N 
0 N 
'0 --'< Model Farm-Rural Residential Model Farm-Rural Residential :l. 

~ (JQ 

Estimator FE FE Estimator FE FE ;:r ('I) 

© N 371 230 N 371 230 ~ IV T 2178 2178 T 2178 2178 0 ('I) 

.j:>. R-square 0.864 0.480 R-square 0.864 0.480 ~ 
c:r '< 
'< 

~ & Parameter Parameter Parameter Parameter 
C1> Variable Estimates Pr > It I Estimates Pr > It I Variable Estimates Pr> ltl Estimates Pr > It I 

;;:: 
..... ~ 

~ Opt-Out_hr 13_DP 0.014 0.000 0.017 0.000 Opt-Out_hrl3_DP _Event 0.009 0.274 0.022 0.000 ~ 

~ 
Opt-Out_hr14_DP 0.016 0.000 0.021 0.000 Opt-Out_hrl4_DP _Event 0.005 0.437 0.007 0.188 

:l. 
Opt-Out_hr 15_DP 0.013 0.000 0.017 0.000 Opt-Out_hr15_DP _Event -0.002 0.715 0.004 0.336 

(JQ Opt-Out_hr16_DP 0.015 0.000 0.019 0.000 Opt-Out_hr 16_DP _Event -0.011 0.077 -0.005 0.3 11 
~ Opt-Out_hr17 _DP 0.015 0.000 0.020 0.000 Opt-Out_hr17 _DP _Event -0.001 0.858 -0.001 0.818 a Opt-Out_hr 18_DP 0.011 0.002 0.018 0.000 Opt-Out_hr18_DP _Event 0.006 0.377 0.006 0.252 C1> 

~ Opt-Out_hr 19 _DP -0.002 0.622 0.007 0.033 Opt-Out_hr 19 _DP _Event 0.012 0.116 0.004 0.510 C1> 
0. Opt-Out_hr20_DP 0.017 0.002 0.015 0.000 Opt-Out_hr20_DP _Event 0.000 0.977 -0.001 0.882 

Opt-Out_hr21_DP 0.023 0.000 0.019 0.000 Opt-Out_hr21_DP _Event -0.023 0.022 -0.010 0.195 
Opt-Out_hr22_DP 0.012 0.020 0.017 0.000 Opt-Out_hr22_DP _Event -0.016 0.105 0.002 0.828 
Opt-In_hr13_DP 0.014 0.025 0.020 0.000 Opt-ln_hrl3_DP _Event 0.036 0.020 0.024 0.019 
Opt-ln_hr14_DP 0.022 0.000 0.020 0.000 Opt-In_hr14_DP _Event 0.011 0.393 0.011 0.188 
Opt-ln__)rr15_DP 0.024 0.000 0.020 0.000 Opt-In_hrl5_DP _Event 0.000 0.979 0.003 0.691 
Opt-In_hr16_DP 0.017 0.005 0.015 0.000 Opt-ln_hrl6_DP _Event 0.011 0.370 -0.008 0.281 
Opt-In_hrl7 _DP 0.024 0.000 0.014 0.001 Opt-In_hrl7 _DP _Event -0.002 0.890 -0.009 0.273 
Opt-In_hrl8_DP 0.018 0.012 0.014 0.002 Opt-ln_hr l8_DP _Event 0.004 0.774 -0.002 0.793 
Opt-ln_hr19_DP 0.005 0.598 0.000 0.968 Opt-In_hr 19 _DP _Event O.Q15 0.333 0.012 0.218 
Opt-In_hr20_DP 0.019 0.080 0.022 0.001 Opt-In_hr20_DP _Event 0.005 0.751 -0.007 0.544 
Opt-ln_hr2l_DP 0.026 0.015 0.019 0.006 Opt-ln_hr21_DP _Event -0.055 0.006 -0.007 0.608 
Opt-ln_hr22_DP 0.021 0.042 0.031 0.000 Opt-In_hr22_DP _Event -0.026 0.170 -0.003 0.840 
IHD_hr13_DP 0.020 0.000 0.017 0.000 lliD_hrl3_DP _Event 0.013 0.111 0.020 0.001 
IHD_hr14_DP 0.023 0.000 0.022 0.000 IHD_hri4_DP _Event 0.001 0.919 0.006 0.222 
IHD_hr15_DP 0.020 0.000 0.021 0.000 IHD_hrl5_DP _Event -0.002 0.713 -0.004 0.440 
IHD_hr16_DP 0.018 0.000 0.017 0.000 IHD_hrl6_DP _Event 0.001 0.884 -0.002 0.645 
lliD_hri7_DP 0.020 0.000 0.019 0.000 IHD_hr17_DP _Event 0.001 0.894 -0.002 0.736 
IHD_hr18_DP 0.015 0.000 0.018 0.000 IHD_hrl8_DP _Event 0.005 0.466 0.005 0.339 
IHD_hri9_DP 0.002 0.618 0.008 0.029 IHD_hri9_DP _Event 0.019 O.Ql5 O.QI5 0.011 
IHD_hr20_DP 0.010 O.Q78 0.019 0.000 IHD_hr20_DP _Event 0.007 0.399 -0.001 0.833 
IHD_hr2l_DP 0.022 0.000 0.022 0.000 IHD_hr2l_DP _Event -0.007 0.487 -0.014 0.055 
IHD_hr22_DP 0.011 0.037 0.019 0.000 IHD_hr22_DP _Event 0.002 0.815 - 0.011 0.135 
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Table A3: Farm-Rural and Residential Household Fixed Effects Household Characteristics Demand Models 

Test Group 
Estimator 
N 
T 
R-square 

Variable 

CDH 
DP 
hrl3 
hr14 
hr15 
hr16 
hrl7 
hr18 
hr19 
hr20 
hr21 
hr22 
CAC_hr13 
CAC_hr14 
CAC_hr15 
CAC_hr l6 
CAC_hrl7 
CAC_hr18 
CAC_hr19 
CAC~hr20 
CAC_hr21 
CAC_hr22 
pctgn_hr13 
pctgn_hr14 
pctgn_hr15 
pctgn_hr16 
pctgn_hrl7 
pctgn_hr18 
pctgn_hr19 
pctgn_hr20 
pctgn_hr21 

IFR 
FE 
95 

2178 
0.756 

Parameter 
Estimates 

0.051 
0.011 
0.300 
0.327 
0.465 
0.702 
1.180 
1.472 
1.275 
1.018 
1.070 
0.923 
0.431 
0.480 
0.606 
0.634 
0.701 
0.783 
0.686 
0.483 
0.416 
0.429 

-0.062 
-0.122 
-0.294 
-0.506 
-0.970 
-1.115 
-0.638 
-0.236 
-0.247 

Pr > ltl 

0.000 
0.000 
0.030 
0.018 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.720 
0.484 
0.091 
0.004 
0.000 
0.000 
0.000 
0.175 
0.156 

VFR 
FE 
42 

2178 
0.497 

Parameter 
Estimates 

0.040 
0.019 
0.263 
0.297 
0.174 
0.421 
1.178 
0.931 
0.804 
0.435 
0.424 
0.472 
0.155 
0.133 
0.224 
0.157 

-0.750 
-0.693 
-0.049 

0.510 
0.636 
0.700 

-0.123 
-0.220 
-0.069 
-0.207 

0.279 
1.076 
0.565 
0.384 
0.362 

Pr > ltl 

0.000 
0.000 
0.076 
0.045 
0.243 
0.005 
0.000 
0.000 
0.000 
0.003 
0.004 
0.002 
0.110 
0.168 
0.021 
0.104 
0.000 
0.000 
0.611 
0.000 
0.000 
0.000 
0.504 
0.233 
0.709 
0.262 
0.131 
0.000 
0.002 
0.038 
0.051 

TFR 
FE 
55 

2178 
0.825 

Parameter 
Estimates 

0.054 
0.013 
1.277 
1.399 
0.985 
1.041 
0.780 
0.960 
0.929 
0.840 
0.859 
0.838 
0.418 
0.383 
0.423 
0.323 
0.431 
0.553 
0.570 
0.496 
0.622 
0.652 

-1.880 
-1.977 
-1.339 
-1.176 
-0.720 
-0.736 
-0.615 
-0.532 
-0.656 

Pr > It I 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.002 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.002 
0.000 

IRS 
FE 
32 

2178 
0.405 

Parameter 
Estimates 

0.049 
0.015 

-0.603 
-0.562 
-0.418 
-0.392 
-0.106 

0.636 
0.981 
1.215 
1.010 
0.761 
0.853 
0.904 
0.896 
1.014 
1.080 
1.059 
0.853 
0.706 
0.700 
0.533 
0.263 
0.206 
0.074 
0.058 

- 0.108 
-0.812 
-0.946 
-1.111 
-0.801 

Pr > It I 

0.000 
0.000 
0.000 
0.000 
0.002 
0.004 
0.439 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.055 
0.132 
0.592 
0.674 
0.429 
0.000 
0.000 
0.000 
0.000 

VRS 
FE 
21 

2178 
0.606 

Parameter 
Estimates 

0.067 
0.014 

-0.012 
-0.017 
-0.191 

0.053 
0.308 
0.750 
1.119 
1.018 
0.853 
0.920 
0.473 
0.445 
0.629 
0.831 
1.223 
1.343 
1.165 
1.203 
1.044 
0.936 

-0.050 
0.072 
0.176 

-0.013 
-0.298 
-0.833 
-1.184 
-0.962 
-0.654 

Pr > ltl 

0.000 
0.000 
0.955 
0.937 
0.364 
0.802 
0.143 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.810 
0.731 
0.402 
0.952 
0.156 
0.000 
0.000 
0.000 
0.002 

TRS 
FE 
25 

2178 
0.372 

Parameter 
Estimates 

0.052 
0.008 

-1.333 
-0.930 
-0.651 
-0.315 
-0.152 

0.342 
0.192 
0.208 

-0.045 
-0.130 

0.428 
0.288 
0.451 
0.469 
0.634 
0.595 
0.656 
0.586 
0.673 
0.658 
1.618 
1.355 
0.840 
0.519 
0.400 
0.298 
0.580 
0.773 
1.215 

Pr > It I 

0.000 
0.000 
0.000 
0.000 
0.013 
0.228 
0.561 
0.192 
0.465 
0.426 
0.864 
0.619 
0.035 
0.155 
0.026 
0.021 
0.002 
0.003 
0.001 
0.004 
0.001 
0.001 
0.000 
0.000 
0.000 
0.020 
0.073 
0.183 
0.009 
0.001 
0.000 
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Table A3: Farm-Rural and Residential Household Fixed Effects Household Characteristics Demand Models (continued) 

Test Group 
Estimator 
N 
T 
R-square 

Variable 

pctgn_hr22 
event_hrl3 
event_hr14 
event_hr15 
event_hr16 
event_hr17 
event_hr18 
event_hr19 
event_hr20 
event_hr21 
event_hr22 
CAC_event_hrl3 
CAC_event_hr14 
CAC_event_hr15 
CAC_event_hr16 
CAC_event_hr 17 
CAC_event_hr 18 
CAC_event_hr19 
CAC_event_hr20 
CAC_event_hr21 
CAC_event_hr22 
pctgn_event_hr13 
pctgn_event_hr 14 
pctgn_event_hr 15 
pctgn_event_hr16 
pctgn_event_hr 17 
pctgn_event_hr18 
pctgn_event_hr 19 
pctgn_event_hr20 
pctgn_event_hr21 
pctgn_event_hr22 

IFR VFR TFR IRS VRS 
FE FE FE FE FE 
95 

2178 
0.756 

Parameter 
Estimates 

0.006 
0.112 

-0.203 
-0.254 
0.298 
0.196 
0.234 
0.472 
0.329 
0.225 
0.406 
0.567 
0.508 
0.482 
0.328 
0.210 
0.147 
0.350 
0.452 
0.389 
0.296 

- 0.521 
0.130 
0.123 

- 0.632 
-0.732 
-0.801 
-1.306 
-0.954 
-0.254 
-0.280 

Pr > ltl 

0.974 
0.686 
0.465 
0.360 
0.283 
0.480 
0.400 
0.089 
0.235 
0.418 
0.144 
0.001 
0.002 
0.004 
0.047 
0.204 
0.372 
0.034 
0.006 
0.019 
0.074 
0.137 
0.711 
0.725 
0.071 
0.036 
0.022 
0.000 
0.006 
0.468 
0.424 

42 
2178 

0.497 

Parameter 
Estimates 

0.332 
-0.220 
-0.289 
-0.005 
-0.442 
-0.849 
-0.777 
-0.722 
-0.201 
-0.352 
-0.305 
0.245 
0.441 
0.405 
0.104 

-0.253 
-0.105 
-0.003 
-0.251 
0.448 
0.354 
0.099 
0.193 

-0.046 
-0.063 
0.153 

-0.494 
-0.927 
-0.394 
0.706 
0.678 

Pr > It I 

0.073 
0.460 
0.333 
0.988 
0.138 
0.004 
0.009 
0.015 
0.501 
0.238 
0.306 
0.210 
0.024 
0.038 
0.594 
0.196 
0.592 
0.989 
0.199 
0.022 
0.071 
0.789 
0.605 
0.901 
0.865 
0.682 
0.185 
0.013 
0.290 
0.058 
0.069 

55 
2178 

0.825 

Parameter 
Estimates 

-0.506 
0.320 
0.452 
0.521 
0.164 
0.302 
0.458 
0.658 
0.870 
1.082 
1.216 
0.290 
0.332 
0.330 
0.475 
0.063 

-0.087 
-0.001 
0.025 
0.122 
0.116 
-0.895 
-0.952 
-1.092 
-0.831 
-0.888 
-0.906 
-1.029 
-1.163 
-1.229 
-1.363 

Pr > ltl 

0.003 
0.276 
0.124 
0.076 
0.576 
0.304 
0.120 
O.Q25 
0.003 
0.000 
0.000 
0.175 
0.121 
0.123 
0.027 
0.770 
0.685 
0.998 
0.906 
0.569 
0.587 
0.009 
0.005 
0.001 
O.Ql5 
0.010 
0.008 
0.003 
0.001 
0.000 
0.000 

32 
2178 

0.405 

Parameter 
Estimates 

-0.300 
-0.911 
-0.673 
- 0.539 
-0.547 
- 0.167 
-0.292 
-0.302 
-0.434 
0.096 
-0.406 
0.989 
0.773 
0.771 
0.495 
0.085 
0.012 
0.116 
0.403 
0.529 
0.874 
0.606 
0.180 

-0.023 
0.020 

-0.444 
-0.197 
-0.223 
0.108 
-0.163 
0.106 

Pr > ltl 

0.029 
0.001 
0.015 
0.051 
0.047 
0.544 
0.290 
0.274 
0.116 
0.728 
0.141 
0.000 
0.000 
0.000 
0.013 
0.671 
0.954 
0.563 
0.044 
0.008 
0.000 
O.Q28 
0.514 
0.934 
0.941 
0.108 
0.477 
0.419 
0.695 
0.555 
0.700 

21 
2178 

0.606 

Parameter 
Estimates 

-0.733 
-0.747 
-1.534 
-0.939 
-1.314 
-0.495 
-0.677 
-1.003 
-0.259 
0.791 
1.127 
0.050 
0.295 
0.115 

-0.305 
-1.044 
-1.014 
-0.614 
0.042 
1.146 
1.164 
0.722 
1.579 
1.046 
1.160 
0.254 
0.298 
0.437 
-0.166 
-1 .203 
- 1.714 

Pr > ltl 

0.001 
0.079 
0.000 
0.027 
0.002 
0.245 
0.112 
0.019 
0.543 
0.063 
0.008 
0.858 
0.288 
0.679 
0.272 
0.000 
0.000 
0.027 
0.878 
0.000 
0.000 
0.087 
0.000 
0.013 
0.006 
0.548 
0.480 
0.302 
0.695 
0.005 
0.000 

TRS 
FE 
25 

2178 
0.372 

Parameter 
Estimates 

1.168 
0.527 
0.692 
1.970 
2.153 
2.212 
1.787 
2.131 
1.845 
2.016 
1.897 

-0.735 
- 0.391 
-1.099 
-0.930 
-0.796 
-0.340 
-0.432 
-0.268 
- 0.546 
-0.878 
0.215 

-0.343 
-1.029 
-1.558 
-2.032 
-1.937 
-2.438 
-1.935 
-1.561 
- 0.752 

Pr > ltl 

0.000 
0.316 
0.188 
0.000 
0.000 
0.000 
0.001 
0.000 
0.001 
0.000 
0.000 
0.072 
0.338 
0.007 
0.023 
0.051 
0.406 
0.291 
0.511 
0.182 
0.032 
0.632 
0.444 
0.022 
0.001 
0.000 
0.000 
0.000 
0.000 
0.001 
0.094 

N .p. 
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